ATN Tagung, Bad Sachsa, 17. Februar 2016

Dr. Alexander Minewitsch
TTZH Tribologie & Hochtechnologie GmbH,
D-30823 Garbsen, Niedersachsen

3 Business Areas

Tribotechnology

Triboanalysis

Tribomaterials

PVD coating technology LST – laser surface texturing Tribotesting
Grease testing
Structure analysis
Elemental analysis
Phase analysis
Mechanical characterisation
Surface characterisation

Ceramics
Tungsten carbide
PVD coating materials
Lubes and greases

PVD Coating Technology. Equipment

PVD Coating Center, incl. technology, main and peripheral equipment and all required infrastructure for implementation of TTZH coating services in industry. PVD equipment enables deposition of high performance metallurgical coatings, such as titanium nitride TiN, titanium carbo-nitride Ti(C,N) and aluminium titanium nitride AlTiN, aluminium chromium nitride AlCrN, Si — doped coatings TiSiN, AlTiSiN, AlCrSiN, AlTiCrSiN, solid lubricants, etc. for various tribology applications.

The coatings are evaporated onto a variety of cutting tools, dies and moulds, wear components and consumer products made of high speed steel, tungsten carbide and other materials for a temperature range between 180°C up to 500° C. Hybrid PVD technologies and equipment involve cathodic arc evaporation, magnetron sputtering and HIPIMS.

Quelle: PVT

PVD Coating Technology

Rotary platform with two large area arc evaporators

Large area metal and alloy targets for arc evaporator

Quelle: PVT

Cathodes, Targets, Components

Chromium and alloys (99.9 – 99.995)

Cr-2Ta, Cr-0.2Ti-0.3V-1Y, Cr-2.5Ti-0.5Zr, Cr-0.2Zr-1Y, Cr-32Ni-1.5W-0.3Ti-0.3V, Cr/Al (Al44Cr56 and Al67Cr33), Cr/Co, Cr/Cu, Cr/Fe, Cr/Ga, Cr/Gd, Cr/Ge, Cr/Hf, Cr/Ir, Cr/Mn, Cr/Mo, Cr/Nb, Cr/Ni, Cr/Pd, Cr/Pt, Cr/Re, Cr/Ru, Cr/Ta, Cr/Ti, Cr/V, Cr/Y, Cr/Zr

Molybdenum and alloys (99.9 - 99.999)

Mo-0.5Ti, Mo-1Ti-0.3Zr(TZC), Mo-0.5Ti-0.1Zr(TZM), Mo-1.2Hf(MHC), Mo-1.5Hf-0.5Zr-0.2C(ZHM), Mo-30W, Mo-25W-1Hf(HWM-25), Mo-1Ti-0.6Zr-1.5Nb, Mo-5Re, Mo-41.5Re, Mo-47.5Re, Mo/Re/W, Mo/Co, Mo/Cr, Mo/Fe, Mo/Hf, MoLa, Mo/Ni, Mo/Pt, Mo/Re, Mo/Ta, Mo/Ti, Mo/V, Mo/Zr

Tungsten and alloys (99.9 – 99.999)

Doped AKS Tungsten, W-(1-2)ThO2, W-15Mo, W-3Re, W-4Re-0.5Hf, W-25Re, W-25Re-30Mo, W-35Mo-15Ta-15V, W/Co, W/Fe, W/Hf, W/Mo, W/Nb, W/Ni, W/Os, W/Ru, W/Ta, W/Ti, W/Zr, W/Mo/Re, W/Mo/Hf/Re, W/Ta/Re

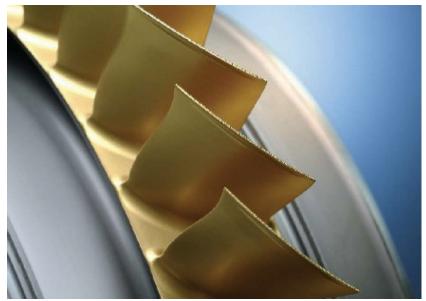
PVD Coating Technology. Some Applications

Rotary platform

Al-based coatings

Cr-based coatings

Si-doped coatings

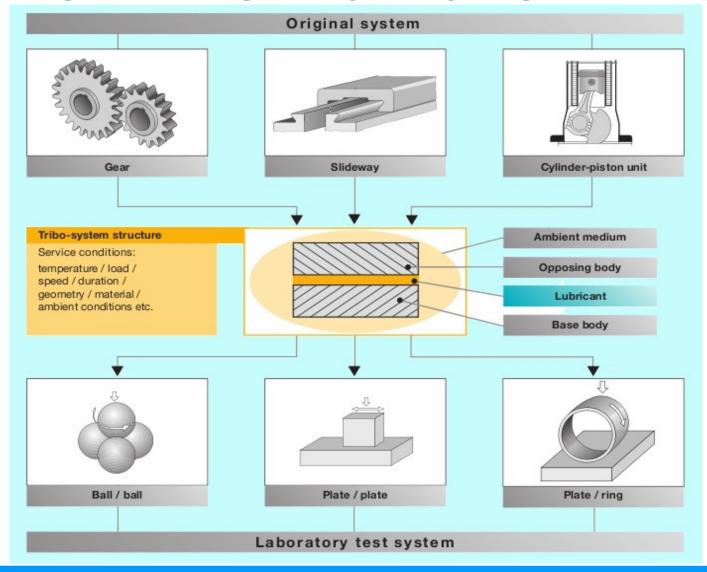


Quelle: PVT

PVD Coating Technology. Some Applications

PVD multilayer coated jet engine components

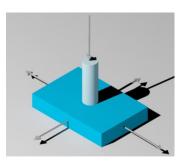
Quelle: MTU+PVT

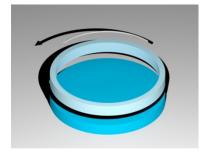

Categories of mechano-dynamical tests according to DIN 50322

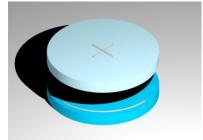
Category	Type of test		Symbol
I	Operating	Practical test (field test)	
II	conditions or conditions similar to actual use	Test rig	
III		Component test	
IV	Test with model system	Test with unchanged com- ponent or scaled down unit	
V		Test with specimens sub- jected to loads similar to actual use	∞ ○
VI		Model test with simple specimens	→ CF

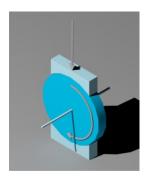
Quelle: GFT - Klüber

Modelling of the original by analysing the tribosystem


Quelle: Klüber

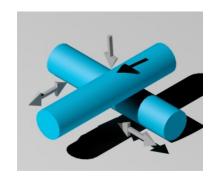

Tribotesting: selected schemes


a) pin-on-disk


b) pin-on-plate

c) ring-on-disk

d) disk-on-disk


e) block-on-ring

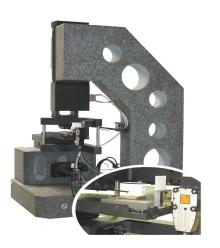
f) cylinder-on-ring

g) 4-ball

h) crossing cylinders

3D optical surface profilometers

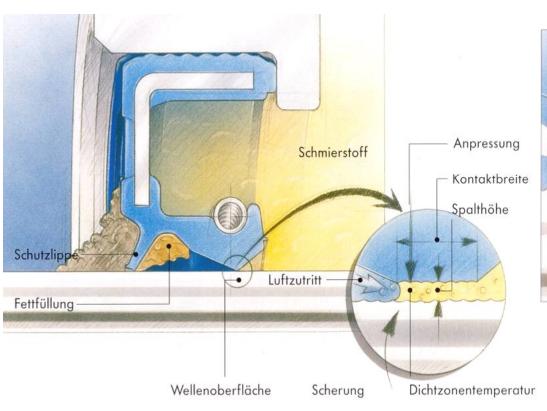
TriboProfiler TP-222

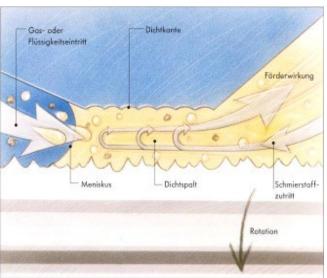

Standard and special surface profiling systems, built to advanced specifications

Powerful and expandable standard instruments. Our high precision TP-series of profilometers are the most flexible systems on the market. Special instruments and custom systems. Owing to modular technology we can adapt our standard instruments to meet special requirements and build customed systems.

TP-series profilometers provide full 3D functionality and incorporate parameters, defined in ISO 25178.

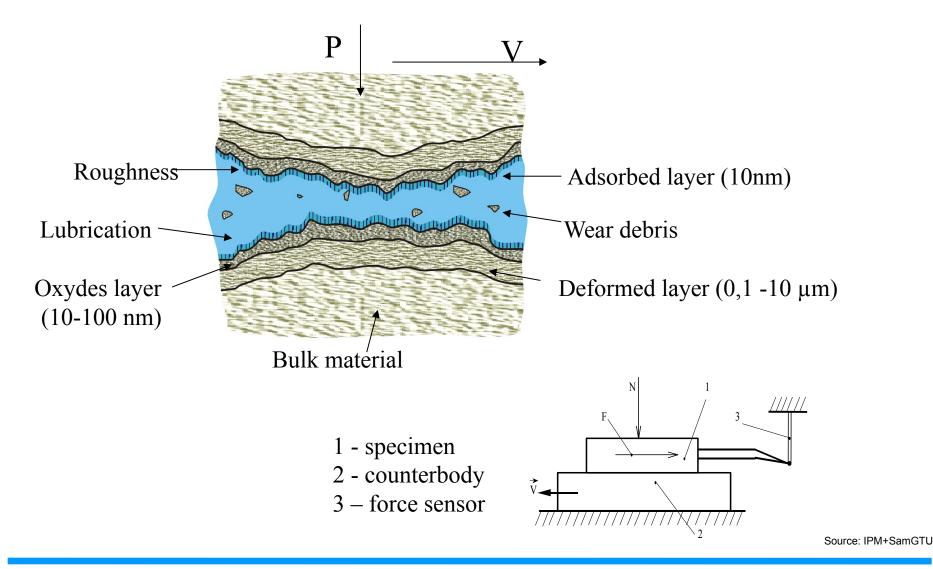
- Contact and non-contact surface metrology
- Stroke: 200 x 200 x 200 mm & rotary axes
- Measuring range from 100µm up to 27mm
- Vertical resolution down to 1 nm
- Outstanding Mountains® surface analyses techniques





Radial shaft seal ring / radial sealing:

The radial shaft seal ring is the most common of shaft sealings. Also for difficult applications of bearing sealings, this radial shaft is used. By use of a garter spring the radial loss of power on the elastomer through aging, bulking or thermal stress/impact can be compensated.



Spies, K.H., Tagung: "Wälzlager im Umbruch", HdT 16./17. April 2008, Anforderungen in modernen Konstruktionen, Bock, E., Dichtsysteme für Wälzlager, Poll, G., Wälzlagergerechte Konzeption von Produkten.

Scheme of a frictional contact and a tribometer

Standard: ASTM D 1831

Lubricating grease is undergone to stresses similar to those in the ball bearings.
Cone penetration acc. to ISO 2137 reveal changes in the shear stability of the lubricating grease and allow an assessment of its

- -durability
- -determine the oil separation
- -change in consistency.

Depending on the test programme the typical duration of the tests could be 2 h, 50 h, 100 h.

Testing temperature 80°C

For greases with a density of 0,9 g/cm³ filling quantity is 55 cm³ or 50 g

Standard: ASTM D 1831

Features:

- •Designed for long test runs at temperatures up to 200° C
- High accuracy digital temperature controller
- •Easy-to-use digital timer with two presets allows unattended operation
- Low noise operation
- Uniform heat distribution provided by aluminum fan and shielded heaters
- Protection against overheating

Specifications:

•Rotary speed: 165 rpm (ASTM D 1831)

10-200 rpm (MIL-G-10924)

•Test temperature: up to 200° C

•Test stations: 4

•Test time: from 10 min. till 99 h

•Voltage: 220 V / 240 V, 50 Hz – EU Execution

230 V / 60 Hz – US Execution 115 V / 60 Hz – US Execution

Included accessories:

- •4 steel test cylinders with end caps and seals
- •4 test rollers (5 kg +/- 50 g)
- Tool for closing and opening the cylinders

Optional:

- •Adjustable rotary speed of cylinders (100–200rpm)
- Test cylinders and rollers made of stainless steel

Provided is piping a controllable flow of gas through the test cylinders during their rotation. Thus an adjustable testing atmosphere in direct contact with the grease sample is achieved.

Combining mechanical stresses and adjustable atmosphere creates realistic conditions for examining various grease properties and thereby a unique possibility for analysing the degradation process of grease.

Taking samples and/or using gas analysis a closer look at the chemical processes (oxidation, decomposition, etc.) ocurring in the test is possible.

Dynamic Rust Tests. EMCOR Method

Determination of the anticorrosion properties of greases when steel bearings have a contact with water or condensed humidity

Standards:

DIN 51802, ISO 11007, BS 2000 (IP 220), NFT 60-135, ASTM D6138, etc.

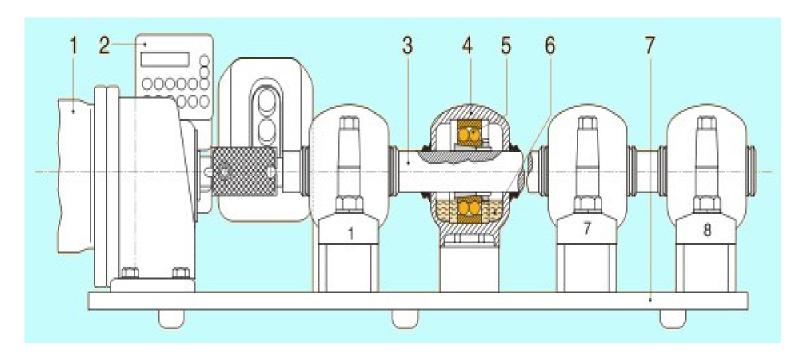
Source: SKF

Specimen: normally 1306K/236725 special bearing with stamped steel cage (sometimes polyamide cage).

Test conditions:

Total duration of the test 168 hours (one week) includes 80 rpm speed during the first 8 hours followed by a stop.

The sequence is as follows: 8 h run, 16 h stop, 8 h run, 16 h stop, 8 h run and finally $108 \text{ h} \pm 2 \text{ h stop}$. No loads applied and the tests run under ambient temperature.


Two bearings in test are run the tester partially immersed in water.

Grease fill: 11 cm³ or 10 g

Test medium: distilled water, brine or other acqueous media.

Dynamic Rust Tests. EMCOR Machine

- 1 electric motor;
- 2 automatic timer;
- 3 shaft with nylon lining;
- 4 pedestal plain bearings, 8 units;
- 5 test bearings, 8 units;
- 6 test medium;
- 7 support

Source: Klüber-SKF

EMCOR Method. Qualification of corrosion degrees of rust inhibition

0	no corrosion	
1	traces of corrosion	
2	slight corrosion	
3	moderate corrosion	
4	strong corrosion	
5	very strong corrosion	

- 0 unchanged;
- 1 max. 3 corrosion spots with a diameter max. 1 mm;
- 2 max. 1% of the surface is corroded, but more and larger corroded spots as with corrosion degree 1;
- 3 >1% but not more, than 5% of the corroded surface;
- 4 >5% but not more, than 10% of the corroded surface;
- 5 >10% of the surface is corroded

Source: Klüber-SKF

Golden Medalists in Tribology

UK

1972 David Tabor

1977 Frederick Thomas Barwell

1979 Duncan Dowson

1983 Alastair Cameron

1985 Kenneth Johnson

2004 Hugh Spikes

Netherlands

1973 Harman Blok

2008 Stathis Ioannides

• USA

1974 Mayo Dyer Hersey

1976 Robert Lawrence Johnson

1978 Dudley Dean Fuller

1980 Mylon Eugene Merchant

1986 Ward Winer

1992 Herbert S Cheng

1993 Ken C Ludema

1998 Ernest Rabinowicz

2010 Frank Talke

2013 Jacob Israelachvili

USSR / Russia

1975 Igor Kragelskii

1982 Georgi Vinogradov

1991 Avtandil Chichinadze

2002 Nikolai A Bushe

2005 Dmitrii Garkunov

2009 Irina Goryacheva

Japan

1981 Norimune Soda

1987 Fujio Hirano

1990 Toshio Sakurai

2003 Yoshitsugu Kimura

2007 Koji Kato

Germany

1984 Heinz Peeken

1989 Gerd Fleischer

2001 Wilfried J Bartz

France

1988 Maurice Godet

1994 Jean Marie Georges

1999 Jean Frêne

Poland

1995 Stanislaw Pytko

Romania

1996 Virgiliu Nicolae Constantinescu

Sweden

1997 Bo Olov Jacobson

Israel

2000 Lou Rozeanu 2012 Jacob Klein

Italy

2006 Roberto Bassani

China

2011 Xue Qunji

2015 Shizhu Wen

Australia

2014 Gwidon Stachowiak

Zielsetzung für 2016

- Dünnschichttribologie
- Extremalbedingungen
- Stillstandmarkierung
- Prüf- und Messtechnik
- Hydraulische Prüfstände
- Mathematisches Modellieren

Vielen Dank für Ihre Aufmerksamkeit!

WWW.TTZH.DE

Sie kennen unsere Pferde. Erleben Sie unsere Stärken.

